EconPapers    
Economics at your fingertips  
 

A GIS Based Design of Groundwater Level Monitoring Network Using Multi-Criteria Analysis and Geostatistical Method

Chandan Kumar Singh () and Yashwant B. Katpatal ()
Additional contact information
Chandan Kumar Singh: Visvesvaraya National Institute of Technology
Yashwant B. Katpatal: Visvesvaraya National Institute of Technology

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2017, vol. 31, issue 13, No 8, 4149-4163

Abstract: Abstract Groundwater systems are dynamic and hence, an effective and optimally designed groundwater level (GWL) monitoring network is very essential to minimize monitoring, time and long term expenses. Groundwater scarcity is a big challenge in regions where excessive extraction takes place and GWL monitoring from observation wells (OWs) is the principal source of information. Hence, proper observation and management is necessary to ensure continual availability of water supplies. This study proposes a new and simplified approach using multi-criteria analysis (weighted overlay, analytical hierarchical process, fuzzy) and geostatistical (ordinary kriging) method to design GWL monitoring network of the Wainganga sub-basin, India. Several parameters considered for the analysis include command area (CA) and non command area (NCA), geology, geomorphologic unit, land use/land cover (LU/LC), lineament density, Groundwater level fluctuation (GWLF), recharge, slope and soil media. The study identifies representative or priority zones using multi-criteria analysis and optimum number of OW was determined within the representative zones using geostatistical method. Combination of two approaches helps overcome shortcomings of previously suggested methods of which analytical hierarchical process (AHP)-geostatistical approach gives more accurate results. Sensitivity analysis was carried out to identify importance of each parameter considered for analysis. The study concludes that minimum 80 wells are required for proper monitoring of GWL in the study area. It also reveals that a combination of these two approaches is effective and easy to implement in the regions where data availability is not constrained.

Keywords: Groundwater; Observation well; Geographical information system (GIS); Multi-criteria analysis (MCA); Geostatistics (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-017-1737-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:31:y:2017:i:13:d:10.1007_s11269-017-1737-z

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-017-1737-z

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:31:y:2017:i:13:d:10.1007_s11269-017-1737-z