EconPapers    
Economics at your fingertips  
 

Effect of Extraordinary Large Floods on at-site Flood Frequency

Bagher Heidarpour, Bahram Saghafian (), Jafar Yazdi and Hazi Mohammad Azamathulla
Additional contact information
Bagher Heidarpour: Science and Research Branch, Islamic Azad University
Bahram Saghafian: Science and Research Branch, Islamic Azad University
Jafar Yazdi: Shahid Beheshti University
Hazi Mohammad Azamathulla: Fiji National University

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2017, vol. 31, issue 13, No 10, 4187-4205

Abstract: Abstract The peak flow of extraordinary large floods that occur during a period of systematic record is a controversial problem for flood frequency analysis (FFA) using traditional methods. The present study suggests that such floods be treated as historic flood data even though their historical period is unknown. In this paper, the extraordinary large flood peak was first identified using statistical outlier tests and normal probability plots. FFA was then applied with and without the extraordinary large floods. In this step, two goodness-of-fit tests including mean absolute relative deviation and mean squared relative deviation were used to identify the best-fit probability distributions. Next, the generalized extreme value (GEV), three-parameter lognormal (LN3), log-Pearson type III (LP3), and Wakeby (WAK) probability distributions were used to incorporate and adjust the extraordinary large floods with other systematic data. Finally, procedures with and without historical adjustment were compared for the extraordinary large floods in terms of goodness-of-fit and flood return-period quantiles. The results of this comparison indicate that historical adjustment from an operational perspective was more viable than without adjustment procedure. Furthermore, the results without adjustment were unreasonable (subject to over- and under-estimation) and produced physically unrealistic estimates that were not compatible with the study area. The proposed approach substantially improved the probability estimation of rare floods for efficient design of hydraulic structures, risk analysis, and floodplain management.

Keywords: Flood frequency analysis; Probability distribution; Extraordinarily large floods; Outlier tests; Historical period (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-017-1739-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:31:y:2017:i:13:d:10.1007_s11269-017-1739-x

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-017-1739-x

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:31:y:2017:i:13:d:10.1007_s11269-017-1739-x