Extracting Optimal Policies of Hydropower Multi-Reservoir Systems Utilizing Enhanced Differential Evolution Algorithm
Iman Ahmadianfar (),
Arvin Samadi-Koucheksaraee () and
Omid Bozorg-Haddad ()
Additional contact information
Iman Ahmadianfar: Behbahan Khatam Alanbia University of Technology
Arvin Samadi-Koucheksaraee: Behbahan Khatam Alanbia University of Technology
Omid Bozorg-Haddad: University of Tehran
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2017, vol. 31, issue 14, No 1, 4375-4397
Abstract:
Abstract Deriving the optimal policies of hydropower multi-reservoir systems is a nonlinear and high-dimensional problem which makes it difficult to achieve the global or near global optimal solution. In order to optimally solve the problem effectively, development of optimization methods with the purpose of optimizing reservoir operation is indispensable as well as inevitable. This paper introduces an enhanced differential evolution (EDE) algorithm to enhance the exploration and exploitation abilities of the original differential evolution (DE) algorithm. The EDE algorithm is first applied to minimize two benchmark functions (Ackley and Shifted Schwefel). In addition, a real world two-reservoir hydropower optimization problem and a large scale benchmark problem, namely ten-reservoir problem, were considered to indicate the effectiveness of the EDE. The performance of the EDE was compared with the original DE to solve the three optimization problems. The results demonstrate that the EDE would have a powerful global ability and faster convergence than the original DE to solve the two benchmark functions. In the 10-reservoir optimization problem, the EDE proved to be much more functional to reach optimal or near optimal solution and to be effective in terms of convergence rate, standard deviation, the best, average and worst values of objective function than the original DE. Also, In the case of two-reservoir system, the best values of the objective function obtained 93.86 and 101.09 for EDE and DE respectively. Based on the results, it can be stated that the most important reason to improve the performance of the EDE algorithm is the promotion of local and global search abilities of the DE algorithm using the number of novel operators. Also, the results of these three problems corroborated the superior performance, the high efficiency and robustness of the EDE to optimize complex and large scale multi-reservoir operation problems.
Keywords: Multi-reservoir; Differential evolution; Optimization; Reservoir (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-017-1753-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:31:y:2017:i:14:d:10.1007_s11269-017-1753-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-017-1753-z
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().