Causal Reasoning for the Analysis of Rivers Runoff Temporal Behavior
José-Luis Molina () and
Santiago Zazo
Additional contact information
José-Luis Molina: Salamanca University
Santiago Zazo: Salamanca University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2017, vol. 31, issue 14, No 18, 4669-4681
Abstract:
Abstract The accurate knowledge about the influence of time in the behavior of rivers systems is crucial for a proper river basin water management. Traditional techniques such as correlograms or ARMA models have been widespread used over the last decades providing the analyzer with an average behaviour of temporal influence of hydrological series. In the last decade, the development of techniques, under the discipline of artificial intelligent, have increased the range of available analytical tools. On the other hand, hydrological processes have a very strong random nature and they are driven by its high uncertainty and variability. Consequently, it is necessary to build tools, able to incorporate these peculiarities in their analytical functioning. Causal Reasoning through Bayesian Networks (BNs) allows processing and analysing hydrological series, incorporating and assessing all their variability. Causality driven by Bayes´ theorem is used here to dynamically identify, characterize and quantify the influence of time (dependence) for each time step in annual run-off series in five Spanish River basins. Therefore, BNs arise as a powerful tool for getting a deeper understanding on the knowledge of temporal behaviour of hydrological series because this analysis is dynamic and implemented specifically for temporal iterations (decision variables). Implications and applications of this research are largely aimed to improve and optimize the design and dimensioning of hydraulic infrastructures, as well as reducing the risk of negative impacts produced by extreme events such as several droughts or floods, among others.
Keywords: Causal reasoning; Run-off; Bayes´ theorem; Temporal analysis; Dependence (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-017-1772-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:31:y:2017:i:14:d:10.1007_s11269-017-1772-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-017-1772-9
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().