An Artificial Intelligence Approach for the Stochastic Management of Coastal Aquifers
Chefi Triki (),
Slim Zekri,
Ali Al-Maktoumi and
Mahsa Fallahnia
Additional contact information
Chefi Triki: Sultan Qaboos University
Slim Zekri: Sultan Qaboos University
Ali Al-Maktoumi: Sultan Qaboos University
Mahsa Fallahnia: Art University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2017, vol. 31, issue 15, No 13, 4925-4939
Abstract:
Abstract Aquifer recharge rates and patterns are often uncertain, especially in arid areas due to sporadic and erratic rainfall. Therefore, determining the optimal groundwater abstraction using classical approaches such as Monte Carlo Simulation (MCS) requires a large number of groundwater simulations and exorbitant computational efforts. The problem becomes even more complex and time consuming for regional coastal aquifers whose domains must be discretized using high-resolution meshes. In fact, even fast evolutionary multi-objective optimization techniques generally require a large number of simulations to determine the Pareto-front among the objectives. This study explores the performance of a Decision Tree (DT) approach for the generation of the Pareto optimal solutions of groundwater extraction. This paper applies the DTs for the optimal management of the Al-Khoud coastal aquifer in Oman. The learning process of the developed DT-based model uses the output of a numerical simulation model to assess the aquifer response based on different abstraction policies. The trained DT network then utilizes the NSGA-II to determine the Pareto-optimal solutions. The simulation show that the general flux pattern in the study area is toward the sea and the hydraulic head following a similar pattern in both best and worst recharging scenarios downstream of the studied recharging dam. Statistical tests showed a good correlation between the DT-based and simulation-based results and demonstrate the capability of the DT approach to obtain high-quality solutions by incorporating a large number of recharge scenarios. Moreover, the required runtime of the DT-based approach is extremely low (5 min) compared to that of the simulation-based method (several days). This means that including additional Monte-Carlo simulations can be readily done in few minutes using the obtained DTs, instead of the long computational time needed by the simulation-based approach.
Keywords: Aquifer management; Uncertainty; Seawater intrusion; Groundwater simulation; M5P model tree; Multi-objective optimization (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-017-1786-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:31:y:2017:i:15:d:10.1007_s11269-017-1786-3
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-017-1786-3
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().