A Fast Semi Distributed Rainfall Runoff Model for Engineering Applications in Arid and Semi-Arid Regions
Remah F. Foda (),
Ayman G. Awadallah () and
Mohamed A. Gad ()
Additional contact information
Remah F. Foda: Ain-Shams University
Ayman G. Awadallah: Fayoum University
Mohamed A. Gad: Ain-Shams University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2017, vol. 31, issue 15, No 14, 4955 pages
Abstract:
Abstract A new GIS based rainfall runoff model is developed for engineering applications, achieving a highly automated watershed analysis process starting from watershed delineation and up to the runoff hydrograph calculation. The model can be classified as a semi-distributed time area model that adopts an improved grid based approach for calculation of watershed response. The model deals with each grid cell in the digital elevation model as an independent hydrologic unit. Travel time through each grid cell is estimated using Manning’s formula and a stream power formula that relates the hydraulic radius at the cell to the characteristics of its upstream watershed area and excess rainfall depth. The watershed response at its outlet is estimated by routing the response of each grid cell using a flow path response function that is defined for that cell. The routed responses of all watershed cells are then convoluted to produce the outflow hydrograph. Model advantages include accuracy improvements due to the incorporation of grid-based routing calculations (both translation and attenuation), fully automated model structure, and fast ability to model many watersheds simultaneously. The combination of these advantages constitutes the novelty of the model that makes it very suitable for engineering design as well as for real-time applications. The model was tested using the data of the experimental watershed, Walnut Gulch, Arizona, USA, gauged by 88 rainfall stations and several discharge recording flumes. The results show that the model can accurately predict the runoff hydrograph where suitable input is available.
Keywords: Rainfall; Runoff; Modeling; GIS; Watershed; Walnut gulch (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-017-1787-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:31:y:2017:i:15:d:10.1007_s11269-017-1787-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-017-1787-2
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().