A Flood Forecasting Model that Considers the Impact of Hydraulic Projects by the Simulations of the Aggregate reservoir’s Retaining and Discharging
Yong Peng,
Xinguo Sun (),
Xiaoli Zhang,
Huicheng Zhou and
Zixin Zhang
Additional contact information
Yong Peng: Dalian University of Technology
Xinguo Sun: Dalian University of Technology
Xiaoli Zhang: Dalian University of Technology
Huicheng Zhou: Dalian University of Technology
Zixin Zhang: Dalian University of Technology
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2017, vol. 31, issue 3, No 18, 1045 pages
Abstract:
Abstract The hydraulic projects, such as reservoirs, ponds, and paddy fields, have a marked influence on the generation of floods, causing a number of difficulties where hydrological forecasting is concerned. To consider the influence of the hydraulic projects in hydrological forecasting, a modified TOPMODEL is presented in the paper, based on the simulation rules of the aggregate reservoir’s retaining and discharging (ARRD). In the new purposed model, termed as ARRD-TOPMODEL, the hydraulic projects are first aggregated as an equivalent reservoir, then the simulation rules of the aggregate reservoir’s retaining and discharging are determined, finally, the simulation rules are combined with an original TOPMODEL model calibrated using the floods not influenced by the hydraulic projects for flood forecasting. The ARRD-TOPMODEL was tested on the upstream of Wudaogou station basin in Northeast China. The results show that compared to the original model, the qualified rate (i.e., the ratio of the number of floods that meet acceptable criteria and the total number of floods) of runoff forecasting was increased from 73% to 100%. The problems that the overestimation of the runoff at beginning of flood season and after a long drought, as well as that the underestimation of the large flood in middle flood season are both solved, and the flood processes predicted by the new model are more consistent with the observed ones. All of these demonstrate that the newly developed model is superior to the original one and the simulation rules of the aggregate reservoir’s retaining and discharging are capable of accurately accounting for the influence of the hydraulic projects on the floods.
Keywords: Flood forecasting; Influence of hydraulic projects; ARRD-TOPMODEL; Simulation rules of the aggregate reservoir’s retaining and discharging; TOPMODEL (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-016-1562-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:31:y:2017:i:3:d:10.1007_s11269-016-1562-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-016-1562-9
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().