Online Ensemble Modeling for Real Time Water Level Forecasts
Lan Yu (),
Soon Keat Tan and
Lloyd H. C. Chua
Additional contact information
Lan Yu: Nanyang Technological University
Soon Keat Tan: Nanyang Technological University
Lloyd H. C. Chua: Deakin University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2017, vol. 31, issue 4, No 2, 1105-1119
Abstract:
Abstract Accurate and reliable flood forecasting is essential to mitigate the threats brought by floods. Ensemble approaches have been used in limited studies to improve the forecasts of component models. In this paper an ensemble model based on neural-fuzzy inference system (NFIS) and three real time updating approaches were used to synthesize the water level forecasts from a Adaptive-Network-based Fuzzy Inference System (ANFIS) model and the Unified River Basin Simulator (URBS) model for three stations in Lower Mekong. The NFIS ensemble model results are compared with the simple average model (SAM) which is adopted as a benchmark ensemble model. The ensemble model of offline learning without real time updating (EN-OFF), ensemble model with real time updating using offline learning (EN-RTOFF), ensemble model with real time updating using online learning (EN-RTON1) and ensemble model with real time updating using online learning and sub-models (EN-RTON2) were studied in this paper. Statistical analysis of the models for all the three stations indicated the superiority of the EN-RTON2 model over EN-RTOFF, EN-RTON1 models, SAM and the EN-OFF model. Not only the spikes in the URBS model were eliminated, but also the time shift problems in the ANFIS model results were decreased.
Keywords: Ensemble model; Real time; Online learning; DENFIS; Lower Mekong (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-016-1539-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:31:y:2017:i:4:d:10.1007_s11269-016-1539-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-016-1539-8
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().