A Monte Carlo Simulation-Based Approach to Evaluate the Performance of three Meteorological Drought Indices in Northwest of Iran
Majid Montaseri (),
Babak Amirataee and
Rizwan Nawaz
Additional contact information
Majid Montaseri: Urmia University
Babak Amirataee: Urmia University
Rizwan Nawaz: University of Leeds
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2017, vol. 31, issue 4, No 15, 1323-1342
Abstract:
Abstract Although meteorological drought indices are considered as important tools for drought monitoring, they are embedded with different theoretical and experimental structures. Regarding the different geographic and climatic conditions around the world, the most meteorological drought indices have been commonly applied for drought monitoring in different parts of the world. Interestingly, it is observed that such indices in the published studies on drought monitoring have usually yielded inconsistent performance. On the other hand, most studies on drought monitoring as well as the performance of drought indices has been based on short-term historical data (less than 50 years). Therefore, this study aimed to analyze and compare the performance of three common indices of SPI, RAI and PNPI to predict long-term drought events using the Monte Carlo procedure and historical data. To do this end, the 50-year recorded or historical rainfall data across 11 synoptic stations in the Northwest of Iran were employed to generate 1000 synthetic data series so that the characteristics of long-term drought might be determined and the performance of those three indices might be analyzed and compared. The results indicated a very high comparative advantage of the SPI in terms of yielding a satisfactory and detailed analysis to determine the characteristics of long-term drought. Also, the RAI indicated significant deviations from normalized natural processes. However, these results could not reasonably and sufficiently predict long-term drought. Finally, the PNPI was determined as the most uncertain and spatial index (depending on average or coefficient of variation of rainfall data) in drought monitoring.
Keywords: Data generation models; Drought; Drought indices; Monte Carlo simulation (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-017-1580-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:31:y:2017:i:4:d:10.1007_s11269-017-1580-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-017-1580-2
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().