A Modified SCS-CN Method Incorporating Storm Duration and Antecedent Soil Moisture Estimation for Runoff Prediction
Wenhai Shi,
Mingbin Huang (),
Kate Gongadze and
Lianhai Wu
Additional contact information
Wenhai Shi: Institute of Soil and Water Conservation, CAS&MWR
Mingbin Huang: Institute of Soil and Water Conservation, CAS&MWR
Kate Gongadze: Rothamsted Research
Lianhai Wu: Rothamsted Research
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2017, vol. 31, issue 5, No 18, 1713-1727
Abstract:
Abstract In one of the widely used methods to estimate surface runoff - Soil Conservation Service Curve Number (SCS-CN), the antecedent moisture condition (AMC) is categorized into three AMC levels causing irrational abrupt jumps in estimated runoff. A few improved SCS-CN methods have been developed to overcome several in-built inconsistencies in the soil moisture accounting (SMA) procedure that lies behind the SCS-CN method. However, these methods still inherit the structural inconsistency in the SMA procedure. In this study, a modified SCS-CN method was proposed based on the revised SMA procedure incorporating storm duration and a physical formulation for estimating antecedent soil moisture (V 0 ). The proposed formulation for V 0 estimation has shown a high degree of applicability in simulating the temporal pattern of soil moisture in the experimental plot. The modified method was calibrated and validated using a dataset of 189 storm-runoff events from two experimental watersheds in the Chinese Loess Plateau. The results indicated that the proposed method, which boosted the model efficiencies to 88% in both calibration and validation cases, performed better than the original SCS-CN and the Singh et al. (2015) method, a modified SCS-CN method based on SMA. The proposed method was then applied to a third watershed using the tabulated CN value and the parameters of the minimum infiltration rate (f c ) and coefficient (β) derived for the first two watersheds. The root mean square error between the measured and predicted runoff values was improved from 6 mm to 1 mm. Moreover, the parameter sensitivity analysis indicated that the potential maximum retention (S) parameter is the most sensitive, followed by f c . It can be concluded that the modified SCS-CN method, may predict surface runoff more accurately in the Chinese Loess Plateau.
Keywords: Soil moisture accounting; Soil conservation service curve number method; Loess plateau; Watershed (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-017-1610-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:31:y:2017:i:5:d:10.1007_s11269-017-1610-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-017-1610-0
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().