Hydrological Model of LID with Rainfall-Watershed-Bioretention System
Sezar Gülbaz () and
Cevza Melek Kazezyılmaz-Alhan ()
Additional contact information
Sezar Gülbaz: Istanbul University
Cevza Melek Kazezyılmaz-Alhan: Istanbul University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2017, vol. 31, issue 6, No 12, 1946 pages
Abstract:
Abstract Sustainable water management is crucial in the reduction of water pollution and floods. New techniques should be investigated in order to avoid present and future problems such as flood, drought, and water contamination. For this purpose, Low Impact Development-Best Management Practice (LID-BMP) has recently come into the stage in storm water management. Vegetative swales, green roofs, bioretentions, storm water wetlands, rain barrels, permeable asphalts and pavements are among LID-BMPs. Bioretention type of LID is implemented to diminish adverse effects of urbanization such as flood by reducing peak flows on surface and thus managing storm water runoff. The aim of this study is to investigate the hydrological performance of bioretentions by developing a hydrological model based on the data obtained using experimental setup called Rainfall-Watershed-Bioretention (RWB). The hydrological model of RWB (HM-RWB) consists of two main components: (i) rainfall-runoff model in which kinematic wave theory is used for simulation of surface runoff generated over the drainage area that reaches the bioretention as inflow; (ii) runoff-bioretention flow model in which Green-Ampt method under unsteady rainfall is employed and further improved by incorporating the effect of ponding depth on bioretention for the simulation of outflow at the exit of the bioretention. It is observed that the results of the hydrological model developed herein are in good agreement with the measured data obtained in the RWB experimental setup.
Keywords: Bioretention; Low impact development; Improved Green-Ampt method; Hydrological model (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-017-1622-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:31:y:2017:i:6:d:10.1007_s11269-017-1622-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-017-1622-9
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().