Integrated SARIMA with Neuro-Fuzzy Systems and Neural Networks for Monthly Inflow Prediction
Hamid Moeeni,
Hossein Bonakdari () and
Isa Ebtehaj
Additional contact information
Hamid Moeeni: Razi University
Hossein Bonakdari: Razi University
Isa Ebtehaj: Razi University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2017, vol. 31, issue 7, No 6, 2156 pages
Abstract:
Abstract Regarding the complexity and limitations of current knowledge, monthly inflow prediction is often not sufficiently accurate and cannot fulfil the needs in water resource planning. Such time series consist of periodic and random components. Thus, by using data pre-processing methods, it is possible to reduce the problematic effects of these components in the modeling process. Monthly inflow methods encompass statistical and soft computing methods. Each of these methods has advantages and disadvantages. In this study, a hybrid model comprising both methods’ advantages is presented. This four-step model includes seasonal autoregressive integrated moving average (SARIMA) and adaptive neuro fuzzy inference systems (ANFIS), which is a new hybrid model (SARIMA-ANFIS). The first step entails data pre-processing to prepare the data for linear component modeling. In the second step, the linear and nonlinear terms are estimated by the SARIMA model. In the third step, some goodness of fit tests are applied to investigate the validity of the linear and nonlinear components of decomposed inflows and SARIMA model parameters. Upon the confident correct selection of components, in the fourth step the nonlinear components are modeled by ANFIS. In this method, ANN modeling is used instead of ANFIS (SARIMA-ANN model). The result comparison indicates that the ANFIS is more accurate than artificial neural networks (ANN) and SARIMA-ANN models, and SARIMA-ANFIS is the superior model among all.
Keywords: SARIMA; Hybrid model; Inflow; Soft computing; Forecasting (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-017-1632-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:31:y:2017:i:7:d:10.1007_s11269-017-1632-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-017-1632-7
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().