Multi-Scale Correlation between the Western U.S. Snow Water Equivalent and ENSO/PDO Using Wavelet Analyses
Kazi Ali Tamaddun,
Ajay Kalra,
Miguel Bernardez and
Sajjad Ahmad ()
Additional contact information
Kazi Ali Tamaddun: University of Nevada
Ajay Kalra: Southern Illinois University
Miguel Bernardez: New Mexico Technology
Sajjad Ahmad: University of Nevada
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2017, vol. 31, issue 9, No 13, 2745-2759
Abstract:
Abstract This study evaluated the correlation between the western U.S. snow water equivalent (SWE) and two major oceanic-atmospheric indices of the Pacific Ocean, namely, the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), using continuous wavelet transformation and its derivatives. Snow Telemetry (SNOTEL) data for 1 April SWE from 323 sites (out of which 258 are in six hydrologic regions) were obtained for a study period of 56 years (1961–2016). The results showed that ENSO had a much higher influence than PDO throughout the western U.S. SWE across the study period. Both ENSO and PDO showed a higher correlation with SWE at multiple timescale bands across different time intervals, although significant intervals in the higher timescales were of longer duration. ENSO showed a higher correlation in the 10-to-16-years band across the entire study period as well as in the lower timescales. PDO showed a higher correlation below the 4-years band. The relative phase relationship suggested that ENSO led SWE, with certain lags, while both were moving in the same direction in many instances. The lag-response behavior of SWE and PDO was not found to be uniform. The regional analyses, based on the western U.S. hydrologic regions, suggested significant variation across the adjacent regions in terms of their correlation with ENSO/PDO. Association with ENSO was also observed to be higher compared to PDO among the regions. Regions close to the ocean and at lower elevation showed higher correlation compared to the inland regions with higher elevation.
Keywords: Western U.S. snow water equivalent (SWE); ENSO; PDO; Wavelet transformation; U.S. hydrologic regions (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-017-1659-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:31:y:2017:i:9:d:10.1007_s11269-017-1659-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-017-1659-9
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().