Evaluating Future Joint Probability of Precipitation Extremes with a Copula-Based Assessing Approach in Climate Change
Bing-Chen Jhong () and
Ching-Pin Tung
Additional contact information
Bing-Chen Jhong: National Taiwan University
Ching-Pin Tung: National Taiwan University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2018, vol. 32, issue 13, No 7, 4253-4274
Abstract:
Abstract Changes in climate extremes may cause the variation of occurrence and intensity of floods and droughts. To investigate the future changes in joint probability behaviors of precipitation extremes for water resources management, an approach including three stages for analyzing the spatial variation of joint return periods of precipitation extremes is proposed in this paper. In the first stage, a weather generator model (WGM) was conducted with general circulation models (GCMs) under representative concentration pathway (RCP) scenarios to generate daily rainfall time series during 2021–2040 (S) and 2081–2100 (L) based on the statistics of the observed rainfall data. Four extreme precipitation indices are defined to represent extreme precipitation events. In the second stage, copula methods are adopted to establish the joint distribution of the precipitation extreme indices. The watershed-scale assessment of flood and drought applied in Shih-Men reservoir in northern Taiwan is conducted to demonstrate the possible change of joint return period. In the third stage, the change rates of joint return periods for bivariate extreme indices are demonstrated to present the occurrence possibility of floods or droughts in the future. The results indicate that floods and droughts might occur more frequently in the upstream region of the reservoir during the twenty-first century. The reservoir operations would be more important for water supply and flood mitigation. In conclusion, the possible changes of future joint probability of the precipitation extremes should be paid attention to for water resources management and draft plans to confront potential challenges in the future.
Keywords: Climate change; Copula functions; Precipitation extremes; Joint return period; Water resources management (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-018-2045-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:32:y:2018:i:13:d:10.1007_s11269-018-2045-y
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-018-2045-y
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().