EconPapers    
Economics at your fingertips  
 

Towards Safer Data-Driven Forecasting of Extreme Streamflows

José P. Matos (), Maria M. Portela and Anton J. Schleiss
Additional contact information
José P. Matos: Laboratoire de Constructions Hydrauliques
Maria M. Portela: University of Lisbon, Instituto Superior Técnico
Anton J. Schleiss: Laboratoire de Constructions Hydrauliques

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2018, vol. 32, issue 2, No 19, 720 pages

Abstract: Abstract Predicting extreme events is one of the major goals of streamflow forecasting, but models that are reliable under such conditions are hard to come by. This stems in part from the fact that, in many cases, calibration is based on recorded time series that do not comprise extreme events. The problem is particularly relevant in the case of data-driven models, which are focused in this work. Based on synthetic and real world streamflow forecasting examples, two main research questions are addressed: 1) would/should the models chosen by established practice be maintained were extreme events being considered and 2) how can established practice be improved in order to reduce the risks associated with the poor forecasting of extreme events? Among the data-driven models employed in streamflow forecasting, Support Vector Regression (SVR) has earned the researchers’ interest due to its good comparative performance. The present contribution builds upon the theory underlying this model in order to illustrate and discuss its tendency to predictably underestimate extreme flood peaks, raising awareness to the obvious risks that entails. While focusing on SVR, the work highlights dangers potentially present in other non-linear regularized models. The results clearly show that, under certain conditions, established practices for validation and choice may fail to identify the best models for predicting extreme streamflow events. Also, the paper puts forward practical recommendations that may help avoiding potential problems, namely: establishing up to what return period does the model maintain good performances; privileging small λ hyperparameters in Radial Basis Function (RBF) SVR models; preferring linear models when their validation performances are similar to those of non-linear models; and making use of predictions made by more than one type of data-driven model.

Keywords: Artificial neural networks; Discharge; Extreme events; Forecasting; Support vector regression (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-017-1834-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:32:y:2018:i:2:d:10.1007_s11269-017-1834-z

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-017-1834-z

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:32:y:2018:i:2:d:10.1007_s11269-017-1834-z