Future Scenarios of Surface Water Resources Availability in North African Dams
Yves Tramblay (),
Lionel Jarlan,
Lahoucine Hanich and
Samuel Somot
Additional contact information
Yves Tramblay: HSM (IRD, CNRS, University of Montpellier)
Lionel Jarlan: CESBIO (IRD, CNES, CNRS, University Paul Sabatier)
Lahoucine Hanich: Université Cadi Ayyad
Samuel Somot: CNRM (Météo France, CNRS)
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2018, vol. 32, issue 4, No 7, 1306 pages
Abstract:
Abstract Climate change may have strong impacts on water resources in developing countries. In North Africa, many dams and reservoirs have been built to secure water availability in the context of a strong inter-annual variability of precipitation. The goal of this study is to evaluate climate change impacts on surface water resources for the largest dams in Algeria, Morocco and Tunisia using high-resolution (12 km) regional climate models (RCM) simulations. To evaluate the atmospheric demand (evapotranspiration), two approaches are compared: The direct use of actual evaporation simulated by the RCMs, or estimation of reference evapotranspiration computed with the Hargreaves-Samani (HAR) equation, relying on air temperature only, and the FAO-Penman Monteith (PM) equation, computed with temperature, wind, radiation and relative humidity. Results showed a strong convergence of the RCM simulations towards increased temperature and a decrease in precipitation, in particular during spring and the western part of North Africa. A decrease in actual evapotranspiration, highly correlated to the decrease in precipitations, is observed throughout the study area. On the opposite, an increase in reference evapotranspiration is observed, with similar changes between HAR and PM equations, indicating that the main driver of change is the temperature increase. Since the catchments are rather water-limited than energy-limited, despite opposite projections for actual and reference evapotranspiration a decrease of water availability is projected for all basins under all scenarios, with a strong east-to-west gradient. The projected decrease is stronger when considering reference evapotranspiration rather than actual evaporation. These pessimistic future projections are an incentive to adapt the current management of surface water resources to future climatic conditions.
Keywords: Water resources; Maghreb; Dams; RCM; Evapotranspiration; Climate change; CORDEX (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-017-1870-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:32:y:2018:i:4:d:10.1007_s11269-017-1870-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-017-1870-8
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().