Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus
Dimitrios Myronidis (),
Konstantinos Ioannou,
Dimitrios Fotakis and
Gerald Dörflinger
Additional contact information
Dimitrios Myronidis: Aristotle University of Thessaloniki
Konstantinos Ioannou: Eastern Macedonia and Thrace Institute of Technology
Dimitrios Fotakis: Institute of Plant Breeding & Phytogenetic Resources
Gerald Dörflinger: Division of Hydrometry, Water Development Department
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2018, vol. 32, issue 5, No 14, 1759-1776
Abstract:
Abstract The persistent water shortage in Cyprus has been alleviated by importing freshwater from neighbouring countries, and severe droughts have been met with financial reimbursement from the EU at least twice. The goal of this research is to investigate and perform short-term forecasting of both streamflow and hydrological drought trends over the island. Eleven hydrometric stations with a 34-year common record length of the mean daily discharge from 10/1979 to 09/2013 are used for this purpose, with the relevant upstream catchments considered to represent pristine conditions. The Streamflow Drought Index (SDI) successfully captures the hydrological drought conditions over the island, and the performance of the index is validated based on both the historic drought archives and results from other drought indices for the island. The Mann–Kendall (M-K) test reveals that the annual and seasonal time series of the discharge volumes always illustrate a decreasing but insignificant trend at a significance level of a = 0.05; additionally, the decrease per decade in the average annual streamflow volume based on Sen’s slope statistic is approximately −9.4%. The M-K test on the SDI reveals that drought conditions intensified with time. Ten autoregressive integrated moving average (ARIMA) models are built and used to forecast the mean monthly streamflow values with moderate accuracy; the best ARIMA forecast model in each catchment is derived by comparing two model-performance statistical measures for the different (p,d,q) model parameters. The predicted discharge values are processed by the SDI-3 index, revealing that non-drought conditions are expected in most catchments in the upcoming three months, although mild-drought conditions are anticipated for catchments 7, 8 and 9.
Keywords: Streamflow drought index; M-K test; ARIMA (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-018-1902-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:32:y:2018:i:5:d:10.1007_s11269-018-1902-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-018-1902-z
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().