Reconstructing Monthly ECV Global Soil Moisture with an Improved Spatial Resolution
Wenlong Jing (),
Pengyan Zhang () and
Xiaodan Zhao ()
Additional contact information
Wenlong Jing: Guangzhou Institute of Geography
Pengyan Zhang: Henan University
Xiaodan Zhao: Guangzhou Institute of Geography
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2018, vol. 32, issue 7, No 19, 2523-2537
Abstract:
Abstract Remote sensing techniques have provided global covered soil moisture at high temporal resolution, however, the coarse spatial resolution and the data gaps have greatly reduced their potential values in large numbers of practical and regional applications. This study proposed a two-steps reconstruction approach for reconstructing satellite-based soil moisture products (ECV) at an improved spatial resolution. The reconstruction model implemented the Random Forests (RF) regression algorithm to simulate the relationships between soil moisture and environmental variables, and takes advantages of the high spatial resolution of optical remote sensing products: the data gaps of ECV soil moisture products were firstly filled by the estimation model trained using available pixels of the ECV products and corresponding environmental variables; then a spatial downscaling was carried out to the gap-filled ECV products to obtain the reconstructed soil moisture with fine spatial resolution (0.05°). As a result, the reconstructed soil moisture well fill the data gaps of the original ECV products and nicely reproduced the original soil moisture values (R2 > 0.98). The spatial resolution and variation details of the soil moisture products were also improved significantly. Validation results indicated that the reconstructed soil moisture showed comparable good performance (average R2 = 0.66) as the original ECV products (average R2 = 0.65) and nicely reflect the temporal behavior of ground-based measurements. As a result, the reconstructed soil moisture well filled the data gaps and greatly improved the spatial resolution of ECV products.
Keywords: Soil moisture; Reconstruction; ECV; Remote sensing; Downscaling (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-018-1944-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:32:y:2018:i:7:d:10.1007_s11269-018-1944-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-018-1944-2
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().