Pond and Irrigation Model (PIM): a Tool for Simultaneously Evaluating Pond Water Availability and Crop Irrigation Demand
Ying Ouyang (),
Gary Feng,
Theodor D. Leininger,
John Read and
Johnie N. Jenkins
Additional contact information
Ying Ouyang: Center for Bottomland Hardwoods Research
Gary Feng: Genetic and Sustainable Agricultural Research Unit
Theodor D. Leininger: Center for Bottomland Hardwoods Research
John Read: Genetic and Sustainable Agricultural Research Unit
Johnie N. Jenkins: Genetic and Sustainable Agricultural Research Unit
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2018, vol. 32, issue 9, No 4, 2969-2983
Abstract:
Abstract Agricultural ponds are an important alternative source of water for crop irrigation to conserve surface and ground water resources. In recent years more such ponds have been constructed in Mississippi and around the world. There is currently, however, a lack of a tool to simultaneously estimate crop irrigation demand and pond water availability. In this study, a Pond-Irrigation Model (PIM) was developed to meet this need using STELLA (Structural Thinking, Experiential Learning Laboratory with Animation) software. PIM simulated crop land and agricultural pond hydrological processes such as surface runoff, soil drainage, and evapotranspiration as well as crop irrigation demand and pond water availability. More importantly, PIM was able to decide when to conduct crop irrigation based on management allowable depletion (MAD) root zone soil water content and to determine optimal ratios of agricultural pond size to crop land with sufficient pond water available for crop irrigation. As a case demonstration, the model was applied to concomitantly estimate row crops (i.e., corn, cotton, and soybeans) water irrigation demand and pond water availability in a farm located at East-central Mississippi. Simulations revealed that corn used more soil water for growth than soybeans, whereas soybeans needed more irrigation water than corn and occurred due to less rainwater available for soybeans growth. We also found that there was one time for corn, zero time for cotton, and two times for soybeans when the pond water level was drawn to near zero for irrigation from 2005 to 2014. PIM developed in this study is a useful tool for estimating crop irrigation demand and pond water availability simultaneously.
Keywords: Crop irrigation demand; Mississippi; Pond-irrigation model; Pond water availability (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-018-1967-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:32:y:2018:i:9:d:10.1007_s11269-018-1967-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-018-1967-8
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().