Budyko’s Based Method for Annual Runoff Characterization across Different Climatic Areas: an Application to United States
Domenico Caracciolo (),
D. Pumo and
F. Viola
Additional contact information
Domenico Caracciolo: Università di Cagliari
D. Pumo: Università di Palermo
F. Viola: Università di Cagliari
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2018, vol. 32, issue 9, No 17, 3189-3202
Abstract:
Abstract Runoff data knowledge is of fundamental importance for a wide range of hydrological, ecological, and socioeconomic applications. The reconstruction of annual runoff is a fundamental task for several activities related to water resources management, especially for ungauged basins. At catchment scales, the Budyko’s framework provides an extremely useful and, in some cases, accurate estimation of the long-term partitioning of precipitation into evapotranspiration and runoff as a function of the prevailing climatic conditions. Recently the same long-term partitioning rules have been successfully used to describe water partitioning also at the annual scale and calculate the annual runoff distribution within a simple analytic framework in arid and semi-arid basins. One of the main advantages of the latter method is that only annual precipitation and potential evapotranspiration statistics, and the Fu’s equation parameter ω are required to obtain the annual runoff probability distribution. The aim of this study is to test the limit and potentialities of the aforementioned method under different climatic conditions. To this aim, the model is applied to more than four hundred basins located in the United States. Catchments were grouped into five different samples, following the subdivision of the continental region in five homogeneous climatic zones according to Köppen-Geiger classification. The theoretical probability distribution of annual runoff at each basin has been compared with that derived from historical observations. The results confirm the capability of the tested technique to reproduce the empirical annual runoff distributions with similar and satisfactory performances across different areas, revealing a good option also in cases characterized by climate and hydrological conditions very different from those hypothesized during the original analytical model design, thus extending the geographical and conceptual limits of applicability of the framework.
Keywords: Budyko’s curve; MOPEX data; Annual runoff distribution; Annual water balance; Water resources assessment (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-018-1984-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:32:y:2018:i:9:d:10.1007_s11269-018-1984-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-018-1984-7
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().