Effect of Wind Flow and Solar Radiation on Functionality of Water Evaporation Suppression Monolayers
Ali Mozafari,
Bozorgmehr Mansouri and
S. Farshid Chini ()
Additional contact information
Ali Mozafari: University of Tehran
Bozorgmehr Mansouri: University of Tehran
S. Farshid Chini: University of Tehran
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2019, vol. 33, issue 10, No 11, 3513-3522
Abstract:
Abstract The average evaporation in Iran is 3 times higher than the world average. Applying chemical monolayers on water surfaces is one of the promising methods for suppressing the evaporation. Literature studies have shown that the mixture of cetyl and stearyl (ratio of 1 to 9) is the state-of-the-art monolayer to minimize the evaporation. Adding calcium hydroxide increases the spreading rate and self-healing of the monolayer. Despite long study and investigation on monolayers, there are inconsistencies in explaining the mechanism by which monolayers decrease the evaporation. The mechanisms used to explain the evaporation reduction are: (i) increasing the reflected solar radiation, (ii) dampening the waves formed by winds and decreasing the water surface area, consequently, and (iii) limiting the escape of water molecules. In this paper, by design of experiments (DOE), we try to answer the above question. Evaporation rate from a container in absence of wind or low wind (~0.2 m/s) and at moderate temperature and relative humidity (~20 °C and 45%) is ~ 10 mm/day. Utilization of the monolayer can save 41% of the evaporated water. Also, in absence of radiation, a 9 m/s wind caused ~ 15 mm/day evaporation. By increasing the wind speed from 0 to 9 m/s, effectiveness of the monolayer deteriorated from 60 to 13%. Therefore, the main mechanism is neither reflecting the radiation (as in absence of radiation, monolayer was still effective) nor dampening the waves and decreasing the surface area (as in absence of wind, monolayer was effective; also, at higher wind speeds where the surface area increases, monolayer efficiency decreases). Therefore, the main mechanism by which monolayers decrease the evaporation rate is limiting the escape of water molecules. So, monolayers may be effective even during the nights even though radiation is at its lowest.
Keywords: Monolayer; Mechanism; Surface tension; Evaporation suppression; Fatty alcohols; Water crisis (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-019-02313-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:33:y:2019:i:10:d:10.1007_s11269-019-02313-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-019-02313-9
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().