A Novel Adaptive Multi-Objective Particle Swarm Optimization Based on Decomposition and Dominance for Long-term Generation Scheduling of Cascade Hydropower System
Hu Hu,
Kan Yang (),
Lyuwen Su and
Zhe Yang
Additional contact information
Hu Hu: Hohai University
Kan Yang: Hohai University
Lyuwen Su: Hohai University
Zhe Yang: Hohai University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2019, vol. 33, issue 11, No 19, 4007-4026
Abstract:
Abstract Multi-objective long-term generation scheduling (MLGS) considering ecological flow demands is important for comprehensive utilization of water resources in cascade hydropower system (CHS). A novel adaptive multi-objective particle swarm optimization based on decomposition and dominance (D2AMOPSO) is developed in this paper to solve the MLGS problem. In D2AMOPSO, a constraint handling method based on repair strategy and individualconstraints and group constraints (ICGC) technique is embedded to address various constraints. An improved logistic map is adopted to initialize the population. During the evolutionary process, an improved Tchebycheff decomposition is introduced to select personal best and global best for each particle, and the non-dominated solutions found so far are stored in an external archive where crowding distance and elitist learning strategy are performed to improve its diversity. Meanwhile, an adaptive flight parameter adjustment mechanism based on Pareto entropy is adopted to balance the global exploration and local exploitation abilities of the population. A normal cloud mutation operator is used to keep the population diversity and escape local minima. In the case study of the Three Gorges Cascade hydropower system (TGC) under three typical years, the results of the proposed method and other four competitors show that D2AMOPSO can obtain better diversity and faster convergence solutions for the MLGS problem in less time.
Keywords: Multi-objective long-term generation scheduling; Ecological flow; Cascade hydropower system; Particle swarm optimization; Constraint handling method (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-019-02352-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:33:y:2019:i:11:d:10.1007_s11269-019-02352-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-019-02352-2
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().