EconPapers    
Economics at your fingertips  
 

Climate Change Impact Assessment on Blue and Green Water by Coupling of Representative CMIP5 Climate Models with Physical Based Hydrological Model

Brij Kishor Pandey (), Deepak Khare, Akiyuki Kawasaki and Prabhash K. Mishra
Additional contact information
Brij Kishor Pandey: Indian Institute of Technology Roorkee
Deepak Khare: Indian Institute of Technology Roorkee
Akiyuki Kawasaki: University of Tokyo
Prabhash K. Mishra: National Institute of Hydrology

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2019, vol. 33, issue 1, No 8, 158 pages

Abstract: Abstract Climatic changes have altered hydrological and climatic parameters worldwide, and climate projections suggest that such alterations will continue. In order to maintain the sustainable development and acquire the knowledge of water availability, climatic projection must be coupled with hydrological models. In this study, Coupled Model Intercomparison Project Phase 5 (CMIP5) climate models output were integrated with a calibrated hydrological model, Soil and Water Assessment Tools (SWAT) to evaluate the potential effect of climate change on green and blue water over Upper Narmada river Basin (UNB). Therefore, top three representative climate models (MIROC5, CNRM-CM5 and MPI-ESM-LR) from 24 CMIP5 climate models were selected for hydrological modelling. Selected representative climate model outputs were bias corrected by distribution mapping to remove systematic bias correction. Multi-site model calibration approaches indicated Nash Sutcliffe Efficiency (NSE) and Coefficient of Determination (R2) as 0.77 and 0.76 for calibration (1978–1995), and 0.73 and 0.70 for validation (1996–2005), respectively. Calibrated model was run for baseline period (1970–2000) and three futuristic period P1 (2011–2040), P2 (2041–2070) and P3 (2071–2100) under Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios. Results indicated annual precipitation decreasing under RCP4.5 and RCP8.5 scenarios changes in green and blue water varying from 16.22 to −14.10% (CNRM,P3) under RCP4.5 and from 38.25 to −22.57% under RCP8.5 with reference to baseline scenario. This study established the sensitivity of UNB to future climatic changes employing projections from CMIP5 climate models and exhibited an approach that applied multiple climate model outputs to estimate potential change over the river basin.

Keywords: Climate change; SWAT; Representative concentration pathways; Green water; Blue water; CMIP5 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-018-2093-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:33:y:2019:i:1:d:10.1007_s11269-018-2093-3

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-018-2093-3

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:33:y:2019:i:1:d:10.1007_s11269-018-2093-3