EconPapers    
Economics at your fingertips  
 

The Cascade Reservoirs Multi-Objective Ecological Operation Optimization Considering Different Ecological Flow Demand

Zhe Yang (), Kan Yang (), Hu Hu () and Lyuwen Su ()
Additional contact information
Zhe Yang: Hohai University
Kan Yang: Hohai University
Hu Hu: Hohai University
Lyuwen Su: Hohai University

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2019, vol. 33, issue 1, No 12, 207-228

Abstract: Abstract In order to coordinate the power generation and downstream ecological protection benefits,the optimal ecological scheduling of cascade reservoirs is pivotal. In current paper, an improved chaotic normal cloud shuffling frog leaping algorithm (CNSFLA) based on chaotic initialization, cloud model evolution strategy and heuristic frog activation mechanism is proposed to overcome defects of conventional SFLA. Moreover, the multi-objective ecological scheduling model for Qingjiang cascade reservoirs is established with consideration of basic, suitable and ideal ecological flow requirements in Geheyan and Gaobazhou control sections. Afterwards, the model established is applied to cascade reservoirs ecological scheduling in Qingjiang. The water level corridor and penalty function are used to handle constraints. The scheduling results for long series indicate that benefits of power generation and basic ecology flow requirement in downstream control sections are fulfilled completely. While for suitable and ideal ecology flow requirements, 98.33%, 99.17 and 86.33%, 88.17% guarantee rate corresponding to Geheyan and Gaobazhou control sections can be achieved during whole scheduling periods. In terms of typical dry year, the less inflow makes it hard to reach the ideal ecology flow requirement in control sections during several periods even though the scheduling by CNSFLA. The guarantee rates and mean monthly ecological flow shortage are 66.67%, 66.67% and 71, 36 m3/s, respectively. Finally, performance analysis of CNSFLA verifies its effective search ability with high quality & stability results. The cascade power generation obtained by CNSFLA in long series scheduling is 75.45(108 kW·h), corresponding guarantee rates of ideal ecological flow requirement are 86.33 and 88.17%.

Keywords: Multi-objective ecological scheduling model; Chaotic normal cloud shuffling frog leaping algorithm (CNSFLA); Chaotic initialization; Cloud model evolution strategy; Heuristic frog activation mechanism (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-018-2097-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:33:y:2019:i:1:d:10.1007_s11269-018-2097-z

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-018-2097-z

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:33:y:2019:i:1:d:10.1007_s11269-018-2097-z