Process Based Integrated Models for Managed Aquifer Recharge and Aquifer Storage Treatment and Recovery
Suman Gurjar (),
Narayan C. Ghosh,
Sumant Kumar,
Anupma Sharma and
Surjeet Singh
Additional contact information
Suman Gurjar: National Institute of Hydrology
Narayan C. Ghosh: National Institute of Hydrology
Sumant Kumar: National Institute of Hydrology
Anupma Sharma: National Institute of Hydrology
Surjeet Singh: National Institute of Hydrology
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2019, vol. 33, issue 1, No 22, 387-400
Abstract:
Abstract Process based semi-analytical models for surface and ground water management of a recharge basin, based on the concept of managed aquifer recharge (MAR) and aquifer storage treatment and recovery (ASTR), are presented. The model for simulation of aquifer responses due to recharge and extraction of recharged water is developed by integrating the hydrologic components into basic water balance equation; and the models for simulation of contaminants’ fate in the recharge basin and through the soil column beneath are developed by considering: (i) in-basin mass balance with decay of contaminant and, (ii) 1-dimensional advection-dispersion-decay equation coupled with linearized sorption isotherm equation, respectively. The estimate of hydrologic components included: inflow to the recharge basin from its catchment by SCS-CN model, water surface evaporation by combination of Priestley-Taylor and Penman method, recharge by Hantush’s analytical equation for water table rise due to recharge from a rectangular spreading basin in absence of pumping well, and drawdown due to pumping by Theis’s well function equation. The contaminant’s fate estimate included: time varying changes in concentration due to assimilation and detention of contaminant in the recharge basin and transport of assimilated materials through saturated soil column until they reached the groundwater table. The performances of recharge-pumping and contaminants’ transport models are illustrated by examples. These models can successfully be used and upscale as potential tools for MAR and ASTR.
Keywords: MAR; ASR; Semi-analytical model; Groundwater recharge; Contaminant transport (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-018-2108-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:33:y:2019:i:1:d:10.1007_s11269-018-2108-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-018-2108-0
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().