Accounting for Spatiotemporal Variations of Curve Number Using Variable Initial Abstraction and Antecedent Moisture
Vijay P. Santikari () and
Lawrence C. Murdoch
Additional contact information
Vijay P. Santikari: Clemson University
Lawrence C. Murdoch: Clemson University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2019, vol. 33, issue 2, No 12, 656 pages
Abstract:
Abstract The curve number (CN) of a watershed varies spatially due to heterogeneity, and temporally due to changes in soil moisture, land cover, temperature, and other processes. The conventional event-scale lumped-parameter CN method lacks the capability to account for spatiotemporal variations, which diminishes the accuracy of its predictions. Heterogeneity causes several parameters of the CN method, including the initial abstraction (Ia), to vary with event rainfall (P), so one way to account for heterogeneity is to treat Ia as a function of P. This modification to the CN method gives rise to variable Ia models. Including antecedent moisture (M) is a common way to account for the temporal variation of CN. This paper presents an improved method of including M, which when used together with variable Ia can allow for accounting of both spatial and temporal variability. A suite of models that use M and/or variable Ia was evaluated using published event-scale data from several studies along with rainfall-runoff observations from two small watersheds in South Carolina, USA. Including M in the CN models significantly improved the accuracy of the runoff predictions, whereas including variable Ia alone resulted in modest improvements. The best performance, NSE > 0.8, was achieved when both variable Ia and M were included together. These modifications significantly improve runoff predictions while only modestly increasing the complexity of the CN method.
Keywords: Curve number; Initial abstraction; Antecedent moisture; Rainfall-runoff modeling; Watershed heterogeneity; Spatiotemporal variations (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-018-2124-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:33:y:2019:i:2:d:10.1007_s11269-018-2124-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-018-2124-0
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().