From Mountain Ranges to Sweeping Plains, in Droughts and Flooding Rains; River Murray Water Quality over the Last Four Decades
Tapas K. Biswas and
Luke M. Mosley ()
Additional contact information
Tapas K. Biswas: Murray-Darling Basin Authority
Luke M. Mosley: University of Adelaide
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2019, vol. 33, issue 3, No 12, 1087-1101
Abstract:
Abstract The aim of this paper was to analyse the spatial and temporal patterns and drivers of water quality in a large arid/semi-arid river system (River Murray, Australia) using a long term (1978 − 2015) dataset collected from 24 monitoring sites. The water quality is highly variable, but on average electrical conductivity (EC), pH, turbidity, dissolved and total nutrient, colour and chlorophyll a levels increase with distance downstream from the headwaters to the lower reaches. This is a function of the natural accumulation of dissolved and particulate components and intermittent, mostly diffuse source, pollutant inputs. The Darling tributary inflow increases turbidity, total phosphorus and pH in the main River Murray channel. Based on long-term trend analysis at four representative sites, EC, nutrients and colour showed declining trends on average at most sites except in the headwaters. Increased flow increases concentrations of most quality parameters, although at very high flows decreases in pH, EC, turbidity and oxidized nitrogen were apparent at many sites. The extreme “Millennium” drought (2002 − 2009) period resulted in lowered concentrations of many water quality parameters, indicating retention in the landscape. In the post-drought flooding (2010 − 2012) period a large amount of organic material was mobilised, resulting in much higher peak colour concentrations than when mid-range flooding was more frequent. It is critical that this monitoring program is continued as a Basin-wide water management plan is implemented.
Keywords: Water chemistry; Murray-Darling basin; Millennium drought; Trend analysis; Climate change (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-018-2168-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:33:y:2019:i:3:d:10.1007_s11269-018-2168-1
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-018-2168-1
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().