A Recursive Approach to Long-Term Prediction of Monthly Precipitation Using Genetic Programming
Suning Liu and
Haiyun Shi ()
Additional contact information
Suning Liu: Southern University of Science and Technology
Haiyun Shi: Southern University of Science and Technology
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2019, vol. 33, issue 3, No 13, 1103-1121
Abstract:
Abstract Precipitation is regarded as the basic component of the global hydrological cycle. This study develops a recursive approach to long-term prediction of monthly precipitation using genetic programming (GP), taking the Three-River Headwaters Region (TRHR) in China as the study area. The daily precipitation data recorded at 29 meteorological stations during 1961–2014 are collected, among which the data during 1961–2000 are for calibration and the remaining data are for validation. To develop this approach, first, the preliminary estimations of annual precipitation are computed based on a statistical method. Second, the percentage of the monthly precipitation for each month of a year is calculated as the mean monthly precipitation divided by the mean annual precipitation during the study period, and then the preliminary estimation of monthly precipitation for each month of a year is obtained. Third, since GP can be used to improve the prediction results through establishing the relationship of the observations with the preliminary estimations at the past and current times, it is adopted to improve the preliminary estimations. The calibration and validation results reveal that the recursive approach involving GP can provide the more accurate predictions of monthly precipitation. Finally, this approach is used to predict the monthly precipitation over the TRHR till 2050. Overall, the proposed method and the obtained results will enhance our understanding and facilitate future studies regarding the long-term prediction of precipitation in such regions.
Keywords: Monthly precipitation; Recursive approach; Long-term prediction; Genetic programming; Three-River Headwaters Region (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-018-2169-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:33:y:2019:i:3:d:10.1007_s11269-018-2169-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-018-2169-0
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().