EconPapers    
Economics at your fingertips  
 

Analyzing the Impacts of Climate Change on Hydro-Environmental Conflict-Resolution Management

Yuni Xu (), Xiang Fu () and Xuefeng Chu ()
Additional contact information
Yuni Xu: Wuhan University
Xiang Fu: Wuhan University
Xuefeng Chu: North Dakota State University

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2019, vol. 33, issue 4, No 22, 1607 pages

Abstract: Abstract Conflict-resolution methods have been applied to water resources management to balance conflicting interests of stakeholders. Due to the climate change impacts on hydrologic processes, the strategy selections of conflict-resolution methods can be influenced, resulting in different selection rules for historical and future periods. This study aims to quantify the impacts of climate change on the strategy-selection rules of the conflict-resolution methods for better long-term strategic decision-making. The methodology of this study consists of climatic, hydrological, environmental and multi-objective optimization models, two fuzzy social choice methods (FSCMs) and four game-theoretical bargaining methods (GTBMs). The hydro-environmental conflict-resolution management in the Yangtze River of China is selected as the case study. The results show that the strategy selection of GTBMs is more stable and results in a better balance between hydropower and environmental objectives, compared to that of FSCMs. Moreover, considering climate change, under the appropriate environmental flow pattern, the stabilities of the strategy selections of FSCMs and GTBMs are slightly influenced, and the average satisfied degrees of both objectives obtained by FSCMs and GTBMs in the future period (2021-2080) are lower than those in the base period (1950-2012). The findings from this study provide guidance for hydro-environmental conflict-resolution management from a sustainable development perspective.

Keywords: Conflict-resolution method; Multi-objective optimization model; Climate change; Environmental protection; Hydropower generation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-019-2186-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:33:y:2019:i:4:d:10.1007_s11269-019-2186-7

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-019-2186-7

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:33:y:2019:i:4:d:10.1007_s11269-019-2186-7