Lake Level Prediction using Feed Forward and Recurrent Neural Networks
Bahrudin Hrnjica () and
Ognjen Bonacci ()
Additional contact information
Bahrudin Hrnjica: University of Bihac
Ognjen Bonacci: University of Split
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2019, vol. 33, issue 7, No 14, 2484 pages
Abstract:
Abstract The protection of high quality fresh water in times of global climate changes is of tremendous importance since it is the key factor of local demographic and economic development. One such fresh water source is Vrana Lake, located on the completely karstified Island of Cres in Croatia. Over the last few decades a severe and dangerous decrease of the lake level has been documented. In order to develop a reliable lake level prediction, the application of the artificial neural networks (ANN) was used for the first time. The paper proposes time-series forecasting models based on the monthly measurements of the lake level during the last 38 years, capable to predict 6 or 12 months ahead. In order to gain the best possible model performance, the forecasting models were built using two types of ANN: the Long-Short Term Memory (LSTM) recurrent neural network (RNN), and the feed forward neural network (FFNN). Instead of classic lagged data set, the proposed models were trained with the set of sequences with different length created from the time series data. The models were trained with the same set of the training parameters in order to establish the same conditions for the performance analysis. Based on root mean squared error (RMSE) and correlation coefficient (R) the performance analysis shown that both model types can achieve satisfactory results. The analysis also revealed that regardless of the model types, they outperform classic ANN models based on datasets with fixed number of features and one month the prediction period. Analysis also revealed that the proposed models outperform classic time series forecasting models based on ARIMA and other similar methods .
Keywords: ANN; LSTM; Time series prediction; Lake level; Karst hydrology (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-019-02255-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:33:y:2019:i:7:d:10.1007_s11269-019-02255-2
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-019-02255-2
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().