Advanced Evaluation Methodology for Water Quality Assessment Using Artificial Neural Network Approach
Sandeep Bansal () and
Geetha Ganesan
Additional contact information
Sandeep Bansal: Lovely Professional University
Geetha Ganesan: Lovely Professional University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2019, vol. 33, issue 9, No 10, 3127-3141
Abstract:
Abstract The increasing rate of water pollution and consequent increase of waterborne diseases are compelling evidence of danger to public health and all living organisms. Preservation of flora and fauna by controlling various unexpected pollution activities has become a great challenge. This paper presents an artificial neural network (ANN)-based method for calculating the water quality index (WQI) to estimate water pollution. The WQI is a single indicator representing an overall summary of various water test results. However, selection of the weight values of the water quality parameters for WQI calculation is a tedious task. Therefore, the ANN approach is found to be useful in this study for calculating the weight values and the WQI in an efficient manner. This work is novel because we propose a methodology that uses a mathematical function to calculate the weight values of the parameters regardless of missing values, which were randomly decided in previous work. The results of the proposed model show increased accuracy over traditional methods. The accuracy of the calculated WQI also increased to 98.3%. Additionally, we also designed a web interface and mobile app to supply contamination status alerts to the concerned authorities.
Keywords: Water pollution; Water quality; Water quality standards; Artificial neural network; Pollution and health; Water pollution measurement (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-019-02289-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:33:y:2019:i:9:d:10.1007_s11269-019-02289-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-019-02289-6
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().