EconPapers    
Economics at your fingertips  
 

Integrating Ground-based Observations and Radar Data Into Gridding Sub-daily Precipitation

Alexandru Dumitrescu (), Marek Brabec and Marius Matreata
Additional contact information
Alexandru Dumitrescu: Meteo Romania (National Meteorological Administration)
Marek Brabec: Institute of Computer Science of the Czech Academy of Sciences
Marius Matreata: National Hydrological Forecast Center

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2020, vol. 34, issue 11, No 4, 3479-3497

Abstract: Abstract A new and general approach is proposed for interpolating 6-h precipitation series over large spatial areas. The outputs are useful for distributed hydrological modelling and studies of flooding. We apply our approach to large-scale data, measured between 2014 and 2016 at 159 weather stations network of Meteo Romania, using weather radar information and local topography as ancillary data. Novelty of our approach is in systematic development of a statistical model underlying the interpolation. Seven methods have been tested for the interpolation of the 6-h precipitation measurements: four regression methods (linear regression via ordinary least squares (OLS), with and without logarithmic transformation, and two models of generalized additive model (GAM) class, with logarithmic and identity links), and three regression-kriging models (one uses semivariogram fitted separately every 6-h, based on the residuals of the GAM with identity links models, and other two with pooled semivariograms, based on the OLS and GAM with identity links models). The prediction accuracy of the spatial interpolation methods was evaluated on a part of the dataset not used in the model-fitting stage. Due to the good results in interpolating sub-daily precipitation, normal general additive model with identity link followed with kriging of residuals with kriging parameters estimated from pooled semivariograms was applied to construct the final 6-h precipitation maps (PRK-NGAM). The final results of this work are the 6-h precipitation gridded datasets available in high spatial resolution (1000 m × 1000 m), together with their estimated accuracy.

Keywords: Sub-daily precipitation; Spatial distribution; Weather radar; General additive model; Extreme events; Romania (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-020-02622-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:34:y:2020:i:11:d:10.1007_s11269-020-02622-4

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-020-02622-4

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:34:y:2020:i:11:d:10.1007_s11269-020-02622-4