Hybrid SSA-ARIMA-ANN Model for Forecasting Daily Rainfall
Poornima Unnikrishnan () and
V. Jothiprakash ()
Additional contact information
Poornima Unnikrishnan: National Centre for Earth Science Studies
V. Jothiprakash: Indian Institute of Technology Bombay
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2020, vol. 34, issue 11, No 11, 3609-3623
Abstract:
Abstract Rainfall, which is one of the most important hydrologic processes, is influenced by many meteorological factors like climatic change, atmospheric temperature, and atmospheric pressure. Even though there are several stochastic and data driven hydrologic models, accurate forecasting of rainfall, especially smaller time step rainfall forecasting, still remains a challenging task. Effective modelling of rainfall is puzzling due to its inherent erratic nature. This calls for an efficient model for accurately forecasting daily rainfall. Singular Spectrum Analysis (SSA) is a time series analysis tool, which is found to be a very successful data pre-processing algorithm. SSA decomposes a given time series into a finite number of simpler and decipherable components. This study proposes integration of Singular Spectrum Analysis (SSA), Auto Regressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN) into a hybrid model (SSA-ARIMA-ANN), which can yield reliable daily rainfall forecasts in a river catchment. In the present study, spatially averaged daily rainfall data over Koyna catchment, Maharashtra has been used. In this study SSA is proposed as a data pre-processing tool to separate stationary and non-stationary components from the rainfall data. Correlogram and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test has been used to validate the stationary and non-stationary components. In the developed hybrid model, the stationary components of rainfall data are modelled using ARIMA method and non-stationary components are modelled using ANN. The study of statistical performance of the model shows that the hybrid SSA-ARIMA-ANN model could forecast the daily rainfall of the catchment with reliable accuracy.
Keywords: Hybrid SSA-ARIMA-ANN model; Singular Spectrum analysis; ARIMA; ANN; Daily rainfall forecasting; Stationary components; Non-stationary components; KPSS test (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-020-02638-w Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:34:y:2020:i:11:d:10.1007_s11269-020-02638-w
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-020-02638-w
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().