Defining a Topographic Index Threshold to Delineate Hydrologically Sensitive Areas for Water Resources Planning and Management
Zeyuan Qiu (),
Steve W. Lyon and
Ellen Creveling
Additional contact information
Zeyuan Qiu: New Jersey Institute of Technology
Steve W. Lyon: Ohio State University
Ellen Creveling: Southern New Jersey Office
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2020, vol. 34, issue 11, No 15, 3675-3688
Abstract:
Abstract Hydrologically sensitive areas (HSAs) are runoff-generating areas often targeted for effective water resources planning and management actions. Commonly, HSAs can be mapped as areas in a landscape with a topographic index (TI) greater than a threshold level. This study explored the impact of a gradient of different TI threshold values for delineating HSAs using two popular TIs: a topographic wetness index (TWI) and a soil topographic index (STI). The resultant HSAs for each TI were compared to the Federal Emergency Management Agency (FEMA) 100-year floodplain map in New Jersey and its five water regions. Spatial comparison indicators were used to assess the spatial similarity between the HSAs delineated and the FEMA floodplain map. Such comparisons identified the threshold that delineated HSAs whose spatial distributions were most consistent with the FEMA floodplain at each spatial scale for each TI. For example, the identified threshold for using a TWI to delineate HSAs was 10.5 at the state level; however, this threshold varied by the water region. The HSAs delineated approximate the spatial extent of runoff-contributing areas to the 100-year flood relevant for water resources planning and management actions for flood hazard mitigation.
Keywords: Hydrologically sensitive areas; Topographic index; Thresholds; Kappa value; Floodplain; Water resources planning and management (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-020-02643-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:34:y:2020:i:11:d:10.1007_s11269-020-02643-z
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-020-02643-z
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().