Hydrological Response to Agricultural Land Use Heterogeneity Using Variable Infiltration Capacity Model
Ankur Srivastava (),
Nikul Kumari and
Minotshing Maza
Additional contact information
Ankur Srivastava: The University of Newcastle
Nikul Kumari: The University of Newcastle
Minotshing Maza: North Eastern Regional Institute of Science and Technology
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2020, vol. 34, issue 12, No 4, 3779-3794
Abstract:
Abstract Hydrological responses corresponding to the agricultural land use alterations are critical for planning crop management strategies, water resources management, and environmental evaluations. However, accurate estimation and evaluation of these hydrological responses are restricted by the limited availability of detailed crop classification in land use and land cover. An innovative approach using state-of-the-art Variable Infiltration Capacity (VIC) model is utilized by setting up the crop-specific vegetation parameterization and analyse the effect of uniform and heterogeneous agricultural land use over the hydrological responses of the basin, in the Kangsabati River Basin (KRB). Thirteen year simulations (1998–2010) based on two different scenarios i.e., single-crop in agricultural land use (SC-ALU) and multi-crop in agricultural land use (MC-ALU) patterns are incorporated in the model and calibrated (1998–2006) and validated (2007–2010) for the streamflow at Reservoir and Mohanpur in the KRB. The results demonstrated that the VIC model improved the estimates of hydrological components, especially surface runoff and evapotranspiration (ET) at daily and monthly timescales corresponding to MC-ALU than SC-ALU (NSC > 0.7). Grid-scale ET estimates are improved after incorporating heterogeneous agricultural land use (NSC > 0.55 and R2 > 0.55) throughout the period of 1998–2010. This study improves our understanding on how the change in agricultural land use in the model settings alters the basin hydrological characteristics, and to provide model-based approaches for best management practices in irrigation scheduling, crop water requirement, and management strategies in the absence of flux towers, eddy covariance, and lysimeters in the basin.
Keywords: Hydrological response; Variable Infiltration Capacity (VIC); Kangsabati River Basin (KRB); Single-crop agricultural land use (SC-ALU); Multi-crop agricultural land use (MC-ALU); Evapotranspiration (ET) (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-020-02630-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:34:y:2020:i:12:d:10.1007_s11269-020-02630-4
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-020-02630-4
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().