Proper Sizing of Infiltration Trenches Using Closed-Form Analytical Equations
Jun Wang () and
Yiping Guo ()
Additional contact information
Jun Wang: McMaster University
Yiping Guo: McMaster University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2020, vol. 34, issue 12, No 6, 3809-3821
Abstract:
Abstract Infiltration trenches in urban areas are mainly used for the purposes of water balance maintenance and water quality improvement. To ensure that a high enough fraction of runoff from a contributing catchment is infiltrated, trenches are usually sized to provide enough storage capacity so that runoff from a design storm of certain depth can be temporarily stored and infiltrated. Since it is difficult to quantify the actual long-term average runoff reduction ratio provided by individual trenches, their exact long-term average performances are often unknown. In this study, the closed-form analytical equations derived and verified previously for the estimation of the long-term average trench performance are applied in the practical design analysis of infiltration trenches following the detailed design guidelines of Atlanta, Georgia and New Durham, New Hampshire, U.S.. The results demonstrate that the conventional design storm-based design procedure cannot always ensure uniform trench performances because of different site soil and infiltration conditions. Use of the analytical equations (also known as the analytical stormwater models) can facilitate more accurate and consistent design of infiltration trenches because the effects of soil type, trench footprint dimensions, drain time and infiltration conditions on trench performance are all taken into consideration. The analytical equations are recommended as a convenient tool for the proper sizing of infiltration trenches so that a uniform long-term average performance can be achieved for all individual cases.
Keywords: Analytical stormwater model; Runoff control; Side infiltration; Water quality volume; Stormwater management (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-020-02645-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:34:y:2020:i:12:d:10.1007_s11269-020-02645-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-020-02645-x
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().