EconPapers    
Economics at your fingertips  
 

Can Groundwater Scenarios Be Predicted from Future Regional Climatic Input Variables?

Satiprasad Sahoo (), Anirban Dhar, Anupam Debsarkar and Amlanjyoti Kar
Additional contact information
Satiprasad Sahoo: Nalanda University
Anirban Dhar: Indian Institute of Technology Kharagpur
Anupam Debsarkar: Jadavpur University
Amlanjyoti Kar: Central Ground Water Board

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2020, vol. 34, issue 15, No 16, 4815-4830

Abstract: Abstract Conjunctive use of water is an integral part of water resources management. Future groundwater scenarios will dictate the water management policies. The present research focuses on future groundwater scenario generation based on regional scale CMIP5 data. The future scenarios for the years 2030, 2050 and 2080 were generated in terms of the groundwater potential zones (GWPZs) with seven futuristic parameters [land use and land cover, maximum temperature, minimum temperature, rainfall, groundwater recharge, groundwater table and evapotranspiration (ET)]. The Dyna-CLUE and MIROC5 were used for generation of the future change in climate and land use/land cover scenarios. The Soil and Water Assessment Tool (SWAT) was utilized for the recharge and ET estimation. Future groundwater heads were calculated by using the Modular Three-Dimensional Finite-Difference Groundwater Flow (MODFLOW). Bias corrected rainfall and temperature data of Representative Concentration Pathways (RCP 4.5) were utilized. Total twelve water quality parameters (pH, Cl−, Mg2+, F−, Na+, EC, TH, HCO3−, K+, Ca2+, SO42− and PO42−) were used for groundwater quality zone (GWQZ) mapping. These GWPZ and GWQZ were divided into three (poor potential, moderate potential, and good potential) and four zones (good quality, moderate quality, poor quality and above permissible limit) respectively. The lower part of the basin was identified as poor GWPZ (35.76% for 2030) and GWQZ due to an increase in urban areas. However, the middle and upstream portion covers good, moderate zones. Field-based soil moisture and groundwater level monitoring data were utilized for validation purposes. It was observed that groundwater level

Keywords: AHP; Dyna-CLUE; GIS; Groundwater potential; Groundwater quality; MIROC5; MODFLOW; SWAT (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s11269-020-02692-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:34:y:2020:i:15:d:10.1007_s11269-020-02692-4

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-020-02692-4

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:34:y:2020:i:15:d:10.1007_s11269-020-02692-4