EconPapers    
Economics at your fingertips  
 

Using AR, MA, and ARMA Time Series Models to Improve the Performance of MARS and KNN Approaches in Monthly Precipitation Modeling under Limited Climatic Data

Saeid Mehdizadeh ()
Additional contact information
Saeid Mehdizadeh: Urmia University

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2020, vol. 34, issue 1, No 16, 263-282

Abstract: Abstract Precipitation is one of the most important components of the hydrologic cycle as it is required for multi-objective applications including flood estimation, drought monitoring, watersheds management, hydrology, agriculture, etc. Therefore, its estimation and modeling via a suitable method is a challenging task for hydrologists. The present study seeks to model monthly precipitation at two stations located in Iran. Two artificial intelligence (AI)-based models consisting of multivariate adaptive regression splines (MARS) and k-nearest neighbors (KNN) were used as the modeling techniques. In doing so, nine single-input scenarios under limited climatic data are implemented using minimum, maximum, and mean air temperatures, dew point temperature, station pressure, vapor pressure, relative humidity, wind speed, and antecedent precipitation data. The attained results illustrate that the performance of single MARS and KNN is relatively poor when modeling the monthly precipitation. Additionally, this study develops hybrid models to enhance the precipitation modeling through combining the MARS and KNN models with three diverse types of the time series (TS) models, namely autoregressive (AR), moving average (MA), and autoregressive moving average (ARMA). The most important justification for integrating the models applied is that the AI and TS-based models are respectively capable of modeling the non-linear and linear terms of the hydrological variables such as precipitation. It is therefore necessary to be considered both of the aforementioned terms in the modeling procedure. A performance comparison of the single and hybrid models denotes the higher accuracy of hybrid models than the single ones. However, the hybrid models generated by combining the KNN and the TS models used are the best-performing models.

Keywords: Multivariate adaptive regression splines; K-nearest neighbors; Autoregressive; Autoregressive moving average; Moving average; Monthly precipitation; Hybrid models (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-019-02442-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:34:y:2020:i:1:d:10.1007_s11269-019-02442-1

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-019-02442-1

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:34:y:2020:i:1:d:10.1007_s11269-019-02442-1