A Hybrid Model Based on Variational Mode Decomposition and Gradient Boosting Regression Tree for Monthly Runoff Forecasting
Xinxin He (),
Jungang Luo (),
Peng Li (),
Ganggang Zuo () and
Jiancang Xie ()
Additional contact information
Xinxin He: Xi’an University of Technology
Jungang Luo: Xi’an University of Technology
Peng Li: Xi’an University of Technology
Ganggang Zuo: Xi’an University of Technology
Jiancang Xie: Xi’an University of Technology
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2020, vol. 34, issue 2, No 25, 865-884
Abstract:
Abstract Accurate and reliable monthly runoff forecasting is of great significance for water resource optimization and management. A neoteric hybrid model based on variational mode decomposition (VMD) and gradient boosting regression (GBRT) called VMD-GBRT was proposed and applied for monthly runoff forecasting. VMD was first employed to decompose the original monthly runoff series into several intrinsic mode functions (IMFs). The optimal number of input variables were then chosen according to the autocorrelation function (ACF) and the partial autocorrelation function (PACF). The trained GBRT model was used as a forecasting instrument to predict the testing set of each normalized subsequence. The ensemble forecasting result was finally generated by aggregating the prediction results of all subsequences. The proposed hybrid model was evaluated using an original monthly runoff series, from 1/1969 to 12/2018, measured at the Huaxian, Lintong and Xianyang hydrological stations in the Wei River Basin (WRB), China. The EEMD-GBRT, the single GBRT, and the single SVM were adopted as comparative forecast models using the same dataset. The results indicated that the VMD-GBRT model exhibited the best forecasting performance among all the peer models in terms of the coefficient of determination (R2 = 0.8840), mean absolute percentage error (MAPE = 19.7451), and normalized root-mean-square error (NRMSE = 0.3468) at Huaxian station. Furthermore, the model forecasting results applied at Lintong and Xianyang stations were consistent with those at Huaxian station. This result further verified the accuracy and stability of the VMD-GBRT model. Thus, the proposed VMD-GBRT model was effective method for forecasting non-stationary and non-linear runoff series, and can be recommended as a promising model for monthly runoff forecasting.
Keywords: Monthly runoff forecasting; Variational mode decomposition; Gradient boosting regression; Hybrid model (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-020-02483-x Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:34:y:2020:i:2:d:10.1007_s11269-020-02483-x
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-020-02483-x
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().