EconPapers    
Economics at your fingertips  
 

Ensemble Based Forecasting and Optimization Framework to Optimize Releases from Water Supply Reservoirs for Flood Control

V. Ramaswamy () and F. Saleh
Additional contact information
V. Ramaswamy: Stevens Institute of Technology, Davidson Laboratory, Department of Civil, Environmental and Ocean Engineering
F. Saleh: Stevens Institute of Technology, Davidson Laboratory, Department of Civil, Environmental and Ocean Engineering

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2020, vol. 34, issue 3, No 5, 989-1004

Abstract: Abstract Water supply reservoir management is based on long-term management policies which depend on customer demands and seasonal hydrologic changes. However, increasing frequency and intensity of precipitation events is necessitating the short-term management of such reservoirs to reduce downstream flooding. Operational management of reservoirs at hourly/daily timescales is challenging due to the uncertainty associated with the inflow forecasts and the volumes in the reservoir. We present an ensemble-based streamflow prediction and optimization framework consisting of a regional scale hydrologic model forced with ensemble precipitation inputs to obtain probabilistic inflows to the reservoir. A multi-objective dynamic programming model was used to obtain optimized release strategies accounting for the inflow uncertainties. The proposed framework was evaluated at a water supply reservoir in the Hackensack River basin in New Jersey during Hurricanes Irene and Sandy. Hurricane Irene resulted in the overtopping of the dam despite releases made in anticipation of the event and resulted in severe downstream flooding. Hurricane Sandy was characterized by low rainfall, however, raised significant concerns of flooding given the nature of the event. The improvement in NSE for the Hurricane Irene inflows from 0.5 to 0.76 and reduction of the spread of PBIAS with decreasing lead times resulted in improvements in the forecast informed releases. This study provides perspectives on the benefits of the proposed forecasting and optimization framework in reducing the decision making burden on the operator by providing the uncertainties associated with the inflows, releases and the water levels in the reservoir.

Keywords: ECMWF; flood control; Irene; ensemble; Dynamic programming (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-019-02481-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:34:y:2020:i:3:d:10.1007_s11269-019-02481-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-019-02481-8

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:34:y:2020:i:3:d:10.1007_s11269-019-02481-8