Mitigating the Impacts of Climate Change on the Performance of Multi-Purpose Reservoirs by Changing the Operation Policy from SOP to MLDR
Hassan Alimohammadi,
Ali Reza Massah Bavani () and
Abbas Roozbahani ()
Additional contact information
Hassan Alimohammadi: University of Tehran
Ali Reza Massah Bavani: University of Tehran
Abbas Roozbahani: University of Tehran
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2020, vol. 34, issue 4, No 13, 1495-1516
Abstract:
Abstract In many parts of the world, especially in metropolitan areas with dry climates, shortages of freshwater resources have become a significant challenge in water resources management. Rapid population growth and climate change in these areas impose additional burdens on water consumption, especially on surface water resources, which are increasingly becoming scarce. In this study, a change from the Standard Operating Policy (SOP) to the Modified Linear Decision Rule (MLDR) policy is considered as a solution to mitigate the impacts of climate change on dams and reservoir operation. The two policies were compared by using five reservoir system performance indices (reliability, resiliency, vulnerability, sustainability and meeting demands) and three hydropower energy generation indices. This study pertained to the Karaj hydropower dam reservoir in Iran and speculated on 2020–2039. Changing the operation policy from current SOP to the MLDR policy can mitigate the adverse effects brought by climate change. According to the results, the SOP policy works best for reservoir operation if there is enough water (optimistic scenario). In the case of pessimistic scenarios (shortage of water), operating the reservoir system with SOP policy would turn into a crisis in supplying drinking water. On the other hand, the MLDR policy prevents the complete draining of the reservoir. In all water-demand scenarios, the MLDR policy reduces the amount of time (by over 90%) in which the reservoir remains empty, compared to the SOP policy. The final results demonstrate how the MLDR policy can mitigate the undesirable effects of climate change.
Keywords: Climate change; Karaj dam; Multipurpose reservoirs; Operation; Optimization (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-020-02516-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:34:y:2020:i:4:d:10.1007_s11269-020-02516-5
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-020-02516-5
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().