EconPapers    
Economics at your fingertips  
 

Fractional Stochastic Interval Programming for Optimal Low Impact Development Facility Category Selection under Uncertainty

Jinjin Gu, Hui Hu (), Lin Wang, Wei Xuan and Yuan Cao
Additional contact information
Jinjin Gu: Hefei University of Technology
Hui Hu: Hefei University of Technology
Lin Wang: Hefei University of Technology
Wei Xuan: Hefei University of Technology
Yuan Cao: Hefei University of Technology

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2020, vol. 34, issue 5, No 1, 1567-1587

Abstract: Abstract Uncertainties in nature and human society influence low impact development (LID) facility category selection during LID facility optimization distribution, however the investigation of this area is seldom. There are still two problems with uncertainty which influence LID facility distribution 1) how uncertainty factors affect LID facility selection and 2) in the case of a number of LID facilities of multiple categories are to be set, how to construct the LID facility optimization distribution model for LID facility category selection under uncertainty. To handle the problems, this study develops a fractional stochastic interval programming model to process LID facility category selection under the influence of uncertainty. The model can either process multiple objectives via objective maximization and minimization or process the stochastic uncertainty and interval uncertainty. The study shows that the uncertainties which influence LID facility category selection exist in rainfall, infiltration rate, release coefficient, unit price and budget. and the study reveal that the key constraint of LID facility category selection is the uncertainty parameter characteristic of the LID facility, in which different parameters lead to various LID facility optimization schemes. Results of the model include a series of LID facility optimization distribution schemes in multiple scenarios.Results also provide a series of feasible schemes for decision makers, and the manager can select the most appropriate scheme according to water processing level or budget. The developed model could 1) identifying the uncertainty which impact the LID facility distribution. 2) processing the LID facility category selection under interval uncertainty and stochastic uncertainty during LID facility optimization distribution. The method can also be used to estimate the rationality of the LID facility optimization scheme. Moreover, the proposed method is universal and could be extended to other cases of LID facility category selection under uncertainty.

Keywords: Fractional stochastic integer programming; Low impact development; Optimization; Uncertainty; Facility category selection (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-019-02422-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:34:y:2020:i:5:d:10.1007_s11269-019-02422-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-019-02422-5

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:34:y:2020:i:5:d:10.1007_s11269-019-02422-5