EconPapers    
Economics at your fingertips  
 

Investigating Energy Flow in Water-Energy Storage for Hydropower Generation in Water Distribution Systems

M. Fayzul K. Pasha (), Matthew Weathers and Brennan Smith
Additional contact information
M. Fayzul K. Pasha: California State University
Matthew Weathers: Oak Ridge National Laboratory
Brennan Smith: Oak Ridge National Laboratory

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2020, vol. 34, issue 5, No 3, 1609-1622

Abstract: Abstract Quantifying excess energy using an energy balance model is the key to designing and operating an energy-efficient water distribution system (WDS). Excess energy, which can be recovered instantly or stored in a water-energy storage is the basis to estimate hydropower potential in the system. For a given WDS with its demand, how the excess energy can be managed efficiently to design a water-energy storage to maximize hydropower generation is the focus of this paper. A single-objective optimization model has been developed to optimize the dimensions for up to six water-energy storages for maximizing hydropower generation while minimizing the pumping energy. While the ratio of total energy recovered to total pumping energy is found to be about 40% for all water-energy configurations, the recovered specific energy ranges from 0.116 kWh/m3 to 0.121 kWh/m3 showing the potential use of WDS as an energy storage. Results show that hydropower generation increases with the increase of number of storages up to a certain number representing the constraints of constant drinking water demand and storage dimensions. In-pipe turbines with pump operation for minimizing pumping energy can offer the optimal solution for WDS energy management. A higher number of storages with in-pipe turbines offers uniformity in pressure distribution resulting increase in system robustness.

Keywords: Hydropower; Water Energy Storage; Design Optimization; Water Distribution Systems (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-020-02497-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:34:y:2020:i:5:d:10.1007_s11269-020-02497-5

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-020-02497-5

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:34:y:2020:i:5:d:10.1007_s11269-020-02497-5