Optimizing Green Infrastructure Implementation with a Land Parcel-Based Credit Trading Approach on Different Spatial Scales
Z. Jia (),
C. Xu and
W. Luo
Additional contact information
Z. Jia: Yangzhou University
C. Xu: Yangzhou University
W. Luo: Yangzhou University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2020, vol. 34, issue 5, No 9, 1709-1723
Abstract:
Abstract Implementing green infrastructure (GI) to reach certain stormwater reduction goal may be a challenging task for some land parcels (LP) in urban areas due to their unfavorable landuse conditions. In this paper, we proposed a capacity/credit trading (CT) method that allows city LPs with favorable landuse conditions to build more GIs than required and trade their extra capacity as monetary credit to LPs with building difficulties; this will allow the whole city area to achieve general stormwater mitigation goal in a more cost effective way. We investigated the effects of CT on cost reduction and (re)distribution of GIs among LPs over different trading scales, and an optimization model was constructed on the basis of different zoning of CT. The model was applied to determine GI distributions among individual LPs in order to minimize the overall cost. With a case study, we demonstrated that, without CT, requiring individual LPs to meet the mitigation goal on their own can be costly, and the cost grows with implementation pressure from storm runoff reduction; engaging CT for GI implementation reduced the cost significantly even at a small trading scale. Our analysis showed that, cost increment for GI implementation can be cut in half by performing CT at a spatial scale of 500–600 m that includes 5–6 LPs; when the CT trading zone is expanded to 1200 m that include 17 LPs, the cost increment can be cut by 3/4. The benefit of CT is obtained by re-distributing GIs among different LPs; but the spatial scale of CT needs to be limited to preserve the virtue of onsite treatment of stormwater with GIs. The proposed approach can be used to take advantage of the city landuse diversities to lower the overall cost of GI implementation for stormwater management.
Keywords: Green infrastructure; Credit trading; Land Parcel; Stormwater mitigation; Spatial scale (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-020-02520-9 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:34:y:2020:i:5:d:10.1007_s11269-020-02520-9
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-020-02520-9
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().