Effects of Digital Elevation Model Resolution on Watershed-Based Hydrologic Simulation
Maryam Roostaee () and
Zhiqiang Deng ()
Additional contact information
Maryam Roostaee: Ardurra Group, Inc.
Zhiqiang Deng: Louisiana State University
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2020, vol. 34, issue 8, No 10, 2433-2447
Abstract:
Abstract This paper investigated effects of Digital Elevation Model (DEM) resolution on flow simulation by applying the HSPF watershed model to three U.S. watersheds with different topographic conditions. Each watershed was delineated automatically and manually with four DEMs of the resolution ranging from 3.5 to 100 m. Results indicated that the simulated flow decreased with lowering DEM resolutions due to the reduction in the delineated drainage area particularly in low gradient watersheds. The DEM resolution impact was minimal when the manual method for watershed delineation was applied. The parameter uncertainty was found to be substantially greater than the resolution uncertainty in two out of three tested watersheds, indicating that the calibration of water balance parameters can alleviate the adverse effects of coarse DEM resolution for watersheds with high to moderate gradients. The findings are important to reducing the uncertainty, caused by DEM resolutions, in watershed modelling results, serving as guidelines for watershed modelling-based water resources management.
Keywords: Digital elevation model resolution; Flow simulation; Watershed modelling; Uncertainty analysis (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-020-02561-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:34:y:2020:i:8:d:10.1007_s11269-020-02561-0
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-020-02561-0
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().