Optimal Model of Desalination Planning Under Uncertainties in a Water Supply System
Zongzhi Wang,
Ailing Ye (),
Kelin Liu and
Liting Tan
Additional contact information
Zongzhi Wang: Nanjing Hydraulic Research Institute
Ailing Ye: Nanjing Hydraulic Research Institute
Kelin Liu: Nanjing Hydraulic Research Institute
Liting Tan: Nanjing Hydraulic Research Institute
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2021, vol. 35, issue 10, No 13, 3277-3295
Abstract:
Abstract A requirement for developing desalination efforts in coastal regions suffering water scarcity is proposed to address the increased water demand and limited traditional water supply. The determination of a plant capacity and water allocation scheme in a multiple-source water supply system, as the first problem in planning desalination under streamflow and water demand uncertainties, remains a challenge. To address this gap, an interval-parameter two-stage stochastic programming model is developed in this study. The first-stage problem is to determine a proper desalination plant capacity, and the second is the development of a water allocation scheme under the uncertainties of natural streamflows, water demands, benefits and economic losses. The objective function is to maximize the net benefit of the system, and the cost function of desalination, including capital and operational costs, implying environmental impact, is linearized within a range of plant capacities to solve the model. The proposed approach is applied to an urban area of Weihai in China to illustrate the validity of the model. The results suggest a capacity of 46 × 103 m3/d in 2030 and 55 × 103 m3/d in 2040. Sensitivity analyses of the parameters indicate that a decrease in the unit price of electricity leads to an increase in the utilization level of desalinated seawater. A complementary relationship was observed between reclaimed water and desalinated seawater, in that a decrease in the use rate of reclaimed water from 0.38 to 0.18 led to a 15% increase in desalinated plant capacity.
Keywords: Water supply system; Desalinated plant capacity; Water resources allocation; Interval programming; Stochastic programming; Uncertainties (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-021-02892-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:35:y:2021:i:10:d:10.1007_s11269-021-02892-6
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-021-02892-6
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().