A Novel Approach Using Hybrid Fuzzy Vertex Method-MATLAB Framework Based on GMS Model for Quantifying Predictive Uncertainty Associated with Groundwater Flow and Transport Models
Mona Nemati (),
Mahmoud Mohammad Rezapour Tabari (),
Seyed Abbas Hosseini () and
Saman Javadi ()
Additional contact information
Mona Nemati: Islamic Azad University
Mahmoud Mohammad Rezapour Tabari: University of Mazandaran
Seyed Abbas Hosseini: Islamic Azad University
Saman Javadi: University of Tehran
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2021, vol. 35, issue 12, No 16, 4189-4215
Abstract:
Abstract Identification of the uncertain parameters, which affecting on the qualitative behavior of the aquifer, and determining their effect on the uncertainty of the simulated nitrate concentration (NC) is one of the major challenges in the qualitative monitoring of aquifers. In this study, in order to determine the quantitative amount of uncertainty related to the simulated nitrate, an approach based on a hybrid of Groundwater Modeling System (GMS) model and Fuzzy Vertex Method (FVM) method was developed using the developed code for the relationship between aquifer simulation model and MATLAB environment. In this model, hydraulic conductivity, NC in aquifer recharge sources, longitudinal dispersivity coefficient, and specific storage parameters were considered as uncertain parameters in the distributed simulation model of the Ardabil aquifer. In the proposed approach, first the quantitative and qualitative (QQ) model of the aquifer was prepared using the GMS model and calibrated. Then, using the FVM method and developed MATALB code, the uncertain values appropriate for each of the aquifer active cells were determined. The results obtained from the monthly NC uncertainty show that with increasing the level of uncertainty, the uncertainty of the simulated NC increases significantly. For example, can be mentioned a 14-fold increase in the number of cells with variation of NC less than 10% in the September month. Also, the lowest and highest variation in the deterministic amount of NC is related to the months of Nov. and Sep. with concentration variations equal to [− 8.5, 8.35] and [− 23.43, 19.8] mg/L, respectively. The findings of this study show that the application of at least 10% uncertainty in the deterministic values of the simulated NC is necessary to provide a suitable view for quality monitoring of aquifer. A quantitative amount of monthly uncertainty in areas with nitrate concentrations greater than 50 mg/L indicates that the amount of uncertainty in these areas is higher than areas with nitrate concentrations less than 50 mg/L. This leads to errors in the monitoring of contaminated areas to eliminate contamination and quality restoration. Also, centralization of uncertainty is mainly concentrated in the northeastern, western and southwestern parts of Ardabil plain and the severity of uncertainty in the mentioned areas increases with the intensification of uncertainty and continues to the central areas. Finally, it must be said that hydraulic conductivity and NC in aquifer recharge sources, respectively, play the most important role in creating uncertainty and is necessary to be considered in the NC simulation models.
Keywords: Uncertainty analysis; GMS; Groundwater simulation; MATLAB; Fuzzy vertex method (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-021-02940-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:35:y:2021:i:12:d:10.1007_s11269-021-02940-1
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-021-02940-1
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().