Implementation of Strategies for the Management of Dams with Sedimented Reservoirs
Pedro Wirley Castro () and
Carlos Alberto Mantilla ()
Additional contact information
Pedro Wirley Castro: Celsia Colombia S.A.
Carlos Alberto Mantilla: Celsia Colombia S.A.
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2021, vol. 35, issue 13, No 7, 4399-4413
Abstract:
Abstract Dams accumulate sediment by interrupting the continuity of rivers, resulting in a loss of reservoir water storage capacity and decreased productive life. These issues raise a growing concern about the decreasing benefits of projects. This paper contributes to the implementation of sediment transit strategies and operating rules of reservoirs to reduce overflows and recover the technical–economic viability of sedimented reservoirs by maintaining ecological flow. The main difficulty lies in the fact that sedimentation of the reservoir limits the mobility of dredging equipment and blocks the intake. To regain the viability of the reservoir, the commonly used strategies to manage water resources and reservoir sedimentation were analyzed. To control reservoir sedimentation and restore the generation capacity, different sediment management strategies were implemented and evaluated at the entrance, body of the reservoir and intake; these strategies included reduction of the entry of sediments, restoration of the storage capacity, clearing of the water intake for the turbines to restore power generation, trash rack cleaning during the power generation process and modification of the hydroelectric power plant operating rules to optimize the economic income. The implemented strategies successfully reduced overflows from 88 to 40% in 3 years and stabilized the reservoir storage capacity by balancing the inflow and removal of sediments. Although the water intake for the turbines was cleaned, accumulation increased in other areas of the reservoir. Finally, root cause analysis (RCA) was employed, and solutions were proposed to increase the capacity of the reservoir and reduce overflows to 15%.
Keywords: Dam management; Dredging; Overflows; Reservoir sedimentation; Water resource management (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11269-021-02956-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:35:y:2021:i:13:d:10.1007_s11269-021-02956-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-021-02956-7
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().