EconPapers    
Economics at your fingertips  
 

Daily Streamflow Forecasting Based on Flow Pattern Recognition

Fang-Fang Li, Han Cao, Chun-Feng Hao and Jun Qiu ()
Additional contact information
Fang-Fang Li: China Agricultural University
Han Cao: China Agricultural University
Chun-Feng Hao: China Institute of Water Resources and Hydropower Research
Jun Qiu: Tsinghua University

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2021, vol. 35, issue 13, No 17, 4620 pages

Abstract: Abstract Accurate streamflow prediction is of great significance for water resource management. In recent years, data-driven models such as artificial neural networks (ANNs) and support vector machines (SVMs) have been widely used in the field of flow prediction. However, traditional data-driven models neglect the extraction and utilization of the data's own characteristics. This study proposes a daily flow prediction model based on the pattern recognition of flow sequences. Based on the input number of the prediction model derived from the partial autocorrelation function, the flow sequence was divided into subsequences. Five patterns of flow subsequences, including monotonic rising, monotonic falling, monotonic stable, concave, and convex, were then identified, which helped to explore the characteristics of the flow subsequences. For each pattern, traditional ANN and SVM models were applied to predict the flow. A comparison with the traditional ANN and SVM models shows that the hybrid models of the pattern recognition method (PRM) and the traditional ANN and SVM have higher accuracy. The Nash efficiency coefficient (NSE) of the hybrid PRM-SVM model was as high as 0.9815, and the mean absolute percentage error (MAPE) was only 6.75%. In addition, the prediction accuracy of the flood peak also improved. The average relative error of the peak flood derived from the hybrid PRM-ANN and PRM-SVM models were reduced by 0.12% and 0.40%, respectively, compared with the traditional ANN and SVM models. Graphical Abstract

Keywords: Pattern recognition; Flow prediction; SVM; ANN; Accuracy (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s11269-021-02971-8 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:35:y:2021:i:13:d:10.1007_s11269-021-02971-8

Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269

DOI: 10.1007/s11269-021-02971-8

Access Statistics for this article

Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris

More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-20
Handle: RePEc:spr:waterr:v:35:y:2021:i:13:d:10.1007_s11269-021-02971-8