Estimating the Aquifer’s Renewable Water to Mitigate the Challenges of Upcoming Megadrought Events
Ameneh Mianabadi,
Seyed Majid Hasheminia (),
Kamran Davary,
Hashem Derakhshan and
Markus Hrachowitz
Additional contact information
Ameneh Mianabadi: Graduate University of Advanced Technology
Seyed Majid Hasheminia: Ferdowsi University of Mashhad
Kamran Davary: Ferdowsi University of Mashhad
Hashem Derakhshan: Ferdowsi University of Mashhad
Markus Hrachowitz: Delft University of Technology
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), 2021, vol. 35, issue 14, No 14, 4927-4942
Abstract:
Abstract In arid and semi-arid regions of the world, the occurrence of prolonged drought events (megadroughts) associated with climate change can seriously affect the balance between water supply and demand, thereby severely increasing the susceptibility of such regions to adverse impacts. In this study, a simple framework is introduced to estimate renewable water volumes (RW) to mitigate the challenges of megadrought events by managing the groundwater resources. The framework connects a weighted annual hydrological drought index (wSPEI) to RW, based on the short time-scale precipitation volume. The proposed framework, which was in a proof-of-concept case study applied to the Neishaboor watershed in the semi-arid part of Iran, showed that developing the weighted drought index can be valuable to estimate RW. The results suggested that the wSPEI, aggregating hydrological drought index (HSPEI) with the time scale k = 5 days and the regional coefficient s = 1.3 can be used to estimate RW with reasonable accuracy (R2 = 0.73, RMSE = 11.5 mm year−1). This indicates that in the Neishaboor watershed, the best estimation of RW can be determined by precipitation volumes (or the lack thereof) falling over 5-day aggregation periods rather than by any other time scales. The accuracy of the relationship was then investigated by cross validation (leave-one-out method). According to the results, the proposed framework performed fairly well for the estimation of RW, with R2 = 0.75 and RMSE = 12.2 mm year−1 for k = 5 days. The Overall agreement between the wSPEI, the RW derived from water balance calculations, and the estimated RW by the proposed framework was also assessed for a period of 34 years. It showed that the annual RW followed closely the wSPEI, indicating a reasonable relationship between wSPEI and the annual RW. Accordingly, the proposed framework is capable to estimate the renewable water of a given watershed for different climate change scenarios.
Keywords: Renewable water; Weighted drought index; Megadrought; Neishaboor (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11269-021-02980-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:waterr:v:35:y:2021:i:14:d:10.1007_s11269-021-02980-7
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11269
DOI: 10.1007/s11269-021-02980-7
Access Statistics for this article
Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) is currently edited by G. Tsakiris
More articles in Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) from Springer, European Water Resources Association (EWRA)
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().